Final Project Review (FPR)

Neptune

Team 16 April 12, 2016

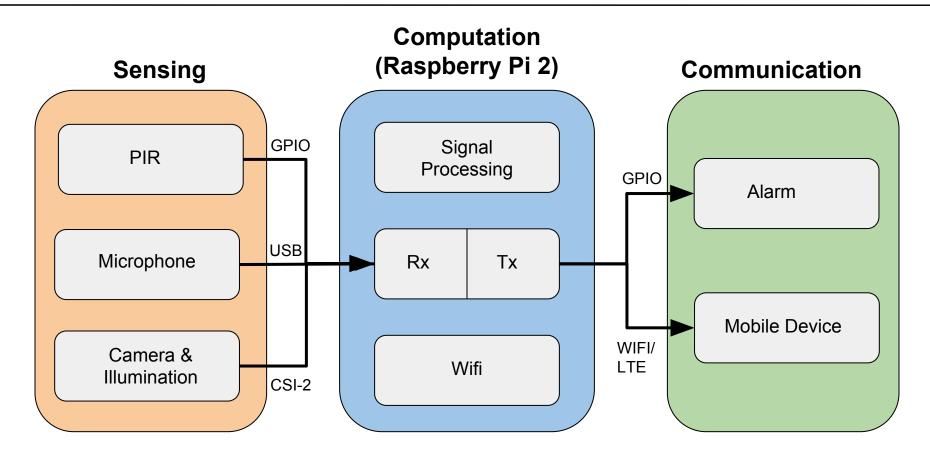
Team 16 Introduction

Frankie Viscusi
EE '16 - Team Manager
Power System &
Floodlight Relay

Hang Do
EE '16
Alarm & Power System

EE '16
Camera & Audio Analysis

Faculty Advisor: **Daniel Holcomb**


What is Neptune?

- Drowning Prevention and Pool Security System
- Uses a PIR sensor to detect human movement in combination with audio analysis to detect splashes
- Alerts those nearby with audible alarm located poolside
- Contacts the person in charge via MMS picture message

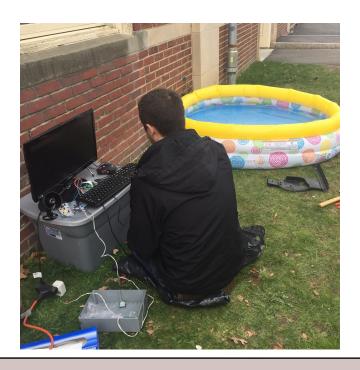
Block Diagram - Neptune

Promised FPR Deliverables

- ✓ Design and implement PCB/Protoboard for Neptune system
- ✓ Refine tone of audible alarm
- ✓ Incorporate floodlight/relay to be triggered upon picture capture to handle night-time disturbances
- ✓ Fabricate enclosure for the Neptune system
- ✓ Test system in a real pool environment
- Implement Simulink on the Raspberry Pi for audio analysis

UMassAmherst Specifications

Specification	Goal	Actual
PIR Sensing Range	10.25ft. 120° view	One PIR covers Inflatable children's pool (60 x 60 x 13 in)
Weight	< 3lbs	5lbs
Power consumption (DC)	< 50 W	36 W
Alarm Decibel Level	> 30 decibels	80 decibels
Weatherproof	Watertight	Sheltered
MMS Message Sent Time	< 1 minute	< 1 minute
Alarm/Floodlight Response Time	Immediately upon splash detection	Immediately upon splash detection


Department of Electrical and Computer Engineering

Kiddie Pool

- Water depth: 10.4 inches
- Dimensions (Width x Length x Height): 60x60x13 inches

Machine Learning- Sound Classification

- During CDR, we promised to incorporate a form of machine learning to improve the effectiveness and reliability of audio analysis
- We planned on accomplishing this via Matlab/Simulink with MIR toolbox
- Discovered python audio analysis and machine learning library PyAudioAnalysis, which we believe to be better and easier to integrate
- Will utilize this to classify sound segments between "splash" and "non-splash"

Machine Learning-PyAudioAnalysis

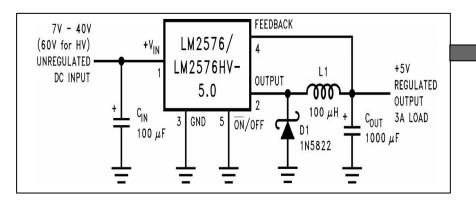
- "Python library covering a wide range of audio analysis tasks, including: feature extraction, classification, segmentation and visualization"
- Advantages:
 - Library is publicly available requiring no subscription
 - Integrates very well with the python software already present on Pi
 - Can be trained on a pool environment

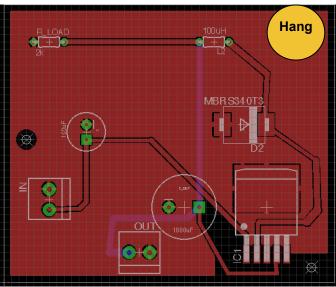
¹ https://github.com/tyiannak/pyAudioAnalysis/wiki

Machine Learning-PyAudioAnalysis

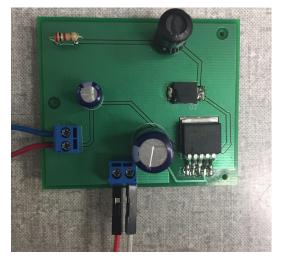
- We collected samples based on an inflatable children's pool and a bucket filled with water
- We recorded several .wav files of "splash" and "non-splash" sounds and placed them into separate folders
- Using this data, PyAudioAnalysis aids us in training a classifier through its feature extraction capabilities and machine learning algorithms
- Our system will continuously record audio segments, and classify each into the appropriate category

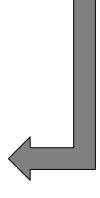
What is not working?


- Splash Classification (false positive readings)
- MMS Messaging Hiccups occasionally
 - Worked perfectly until a few days ago, maybe an update on GMail to the amount of messages sent in a short amount of time. To be investigated


What is working?

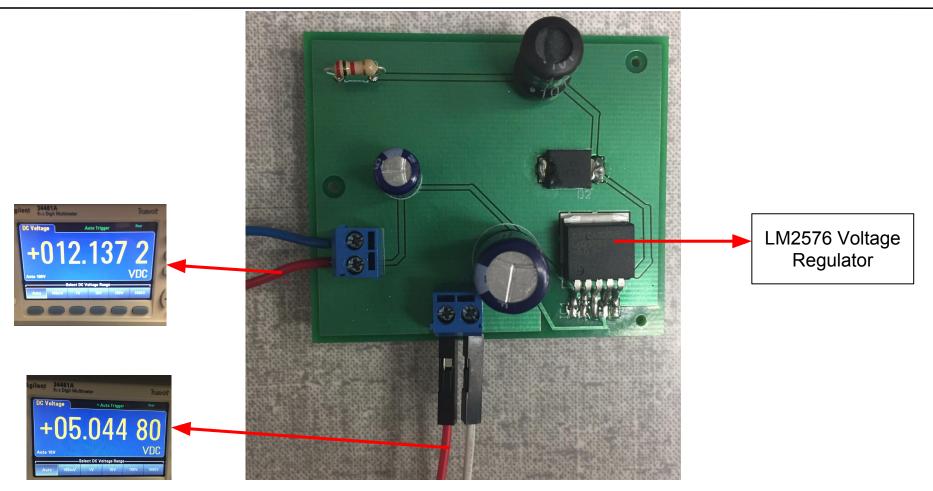
- PIR Sensor- detect heat signatures around pool
- Picture message via WI-FI to cell phone
- Temperature check
- GUI to configure phone number and location
- Alarm (loud and appropriate tone)
- Splash detection (detects true positives)
- Floodlight illumination


PCB Design - Voltage Regulator



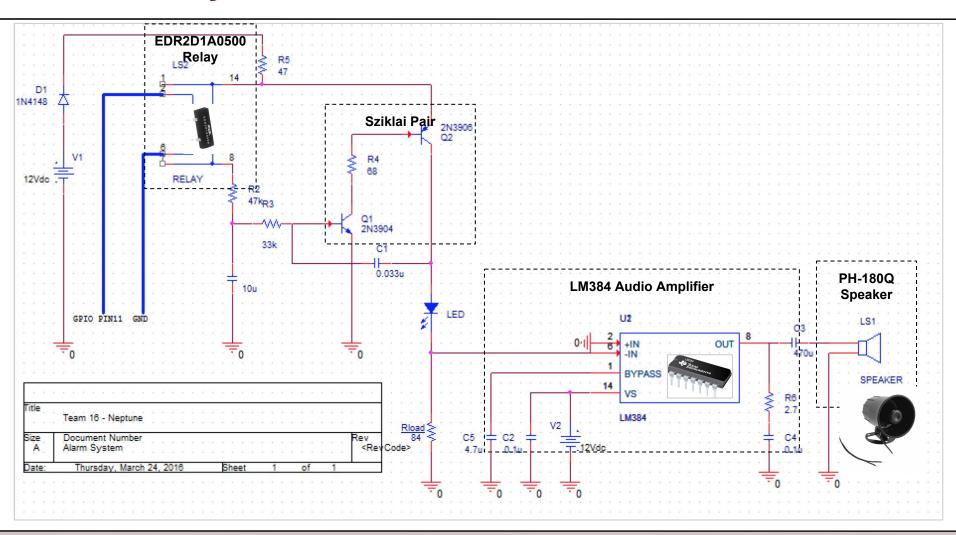
LM2576 Voltage Regulator PCB Board

- LM2576 3A Step-Down Voltage Regulator
- Ordered from Sunstone for \$64/board



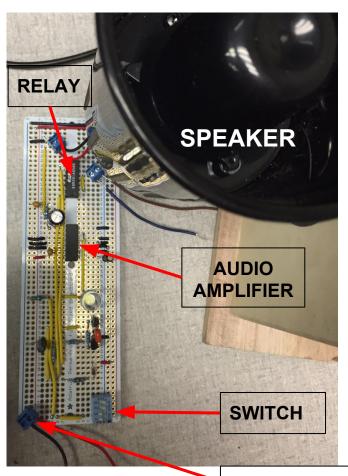
Department of Electrical and Computer Engineering

PCB Results



AD/DC Adapter and LM2576 Voltage Regulator Results shown in Digital Multimeter

Department of Electrical and Computer Engineering


Alarm System Schematic - Revised

Department of Electrical and Computer Engineering

Alarm System Results

Result of Neptune Alarm System

POWER SUPPLY

Department of Electrical and Computer Engineering

Floodlight

Lithonia Lighting oflm 150q 120 lp bz

- Outdoor floodlight purchased at Home Depot for a cost of approx. \$10
- Plug housing (\$3) used to adapt the wall mounted floodlight for use in a 120V outlet.
- Relay allows the floodlight to be turned on only when an intrusion is detected

Enclosure

Birdhouse

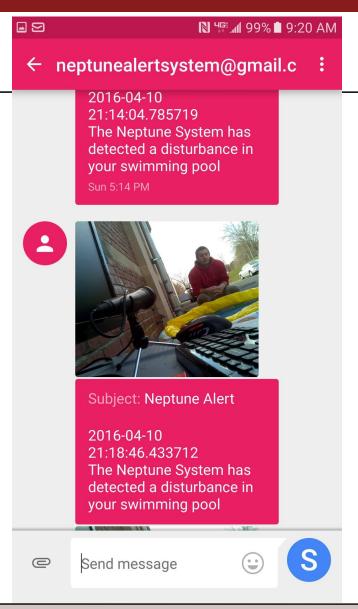
- Cheap, easy to manipulate, and aesthetically pleasing
- Provides shelter while allowing the camera and microphone to have open exposure
- Easy to mount alarm siren, floodlight, and PIR sensors
- Also holds Raspberry Pi 2 and associated wiring

Case from Digikey

- Protects sensitive electronics from the elements
- Holds alarm circuitry, Voltage regulator PCB, and 12V AC/DC converter
- Affixed to the bottom of the birdhouse

Cost Di Canaovvii				
			Part	Cost For Parts Prior to CDR
1			Speaker	\$11.29
			Audio Amplifier	\$2.13
馬	New Parts	Cost	Voltage Regulator	\$2.68
2	Birdhouse	\$11.67	Floodlight Relay	\$7.95
	RPi 3D Printed Enclosure	\$8.88	USB Microphone	\$32.99
Jan - S	Voltage Regulator PCB	\$78.15 \$2.95 \$101.65	USB Wifi Adapter	\$8.50
	Terminal Blocks		PIR Sensor	\$9.95
1	Subtotal		Camera	\$26.65
			Raspberry Pi 2	\$35.00
-	Total Cost \$259.24		Floodlight	\$12.97
			12V 3A AC/DC Converter	\$7.48
		, de	Subtotal	\$157.59

Department of Electrical and Computer Engineering


DEMO

DEMO - With an inflatable children pool


Department of Electrical and Computer Engineering

UMassAmherst Text Message

Department of Electrical and Computer Engineering

DEMO - With a bucket of water

Department of Electrical and Computer Engineering

